Accèder directement au contenu

Associated laboratories : Curie Institute

Systems Biology of Cell Polarity and Cell Division

Research : The aim of our team is to understand the molecular mechanisms and the physical principles involved in cell polarity. We use and develop microfabricated tools in order to control the main chemical and physical parameters of the cell micro-environment in vitro : forces, shape, gradients of molecules, temperature, electrical fields. A new important research area is focusing on the effect of confinement, an important parameter for cells within tissues, on cell behavior.
These tools are coupled with high quality quantitative microscopy, and with up to date cellular and molecular biology methods, to draw a quantitative description of cell behavior, with a particular focus on the cytoskeleton. Our main current subject of research are : effect of forces acting on cells during division (assembly and orientation of the mitotic spindle, cytokinesis), cell migration (mechanism of migration under confinement, with a focus on nuclear squeezing, origin and function of cell trajectories, optimal search strategies), morphogenesis and polarity of yeast cells.
Contacts : Matthieu Piel, Nicolas Minc

Oncologie moléculaire

Thèmes de recherche : Identification des gènes impliqués dans la progression tumorale des carcinomes, validaiton de leurs propriétés fonctionnelles in vitro et in vivo, étude des mécanismes génétiques et épigénétiques responsables de leur activation ou de leur inactivation et caractérisation des voies de signalisation qui leur sont associés.
Stratégies : une approche ciblant des groupes de protéines pouvant jouer un rôle dans la progression tumorale et une approche faisant appel à la biologie à grande échelle (exploitation des données du transcriptome et du génome obtenues par la technique des puces à ADN).
Contact : François Radvanyi

Biology inspired physics at mesoscales

We study collective cellular behaviors that stem from intercellular communication. To characterize these complex phenomena, we use original microfabrication techniques that make possible to accurately probe very different scales from the single cell up to the tissue. This interdisciplinary approach is based on physics, biology and engineering. We emphasize the quantitative aspect of our observations for instance by mapping the velocity field or the cellular traction force field, and by correlating these measurements with the local biochemical activity of the cells.
Contact : P. Silberzan

Biomimetism of cellular movement

The group aims to understand how cells move, with the long-term perspective of a better understanding of the cell movements involved in cancer metastasis. We develop biomimetic systems and simplified cellular models that reproduce specific aspects of cell movement under controlled conditions. Using this approach, we can study the physical and biochemical mechanisms governing cell movement and cell shape changes. The group has 3 complementary strategies : study of the actomyosin cytoskeleton-membrane system using simple cells and cellular mimics (Sykes Team), the biochemical characterization of biopolymer dynamics in vitro and in cells and tissues (Plastino Team), and the analysis and modeling of the mechanical properties of cellular and biomimetic systems (Betz Team).
Contacts : Cécile Sykes, Julie Plastino

Macromolecules and Microsystems in Biology and Medicine (MMBM)

L’équipe s’intéresse à deux axes de recherche : Le développement d’outils microfluidiques pour la biologie et la médecine et les études biophysiques sur molécules uniques, in vitro et au sein de cellules. Dans ces deux axes, nous travaillons le plus souvent avec des équipes partenaires, biologistes ou (en particulier pour le premier axe), médecins. Les projets développés actuellement selon le premier axe concernent en particulier le tri et l’analyse multiparamétrique de cellules tumorales (cellules circulantes, microbiopsies), la constitution in vitro de réseaux de neurones (recherche fondamentales sur les maladies neurodégénératives), les outils de diagnostic de type "laboratoire sur puces", le criblage à haut débit par "microfluidique digitale", des modèles de développement tumoral en milieu artificiel contrôlé. Dans le second axe, on s’intéresse particulièrement aux mécanismes de recombinaison homologue, in vitro et in vivo, et au transport des acides nucléiques à l’intérieur des cellules.
Contact : Jean-Louis Viovy

Membrane and cytoskeleton dynamics

Research focus : We aim at understanding cellular mechanisms that underlie the invasive migration of breast tumor cells.
One of our objectives is to characterize the mechanisms responsible for the formation of invadopodia, the specialized structures of invasive tumor cells responsible for extracellular matrix degradation and remodeling.
Our approaches combine biochemistry and structural biology, gene silencing and live-cell imaging and electron microscopy to generate a high-resolution structural and functional mapping of invadopodia. As the environment of tumor cells is a three-dimensional one, we have developed several assays based on reconstituted 3D matrices to investigate the dynamics of invadopodial components in tumor cells using state-of-the-art live-cell microscopy.
Contact : Philippe Chavrier

Bioinformatics and Computational Systems Biology of Cancer

The Bioinformatics and Computational Systems Biology of Cancer group involves about 60 researchers and students. It is a very active and growing interdisciplinary team of biologists, physicians, mathematicians, statisticians, physicists and computer scientists. The cancer systems biology group’s approach consists in studying the tumour system at different levels (DNA, RNA, protein, network, cell, organ, individual, etc.) in a dynamic manner, proposing a model based on known interactions between the system’s components. Models built in this manner are then used to predict tumour evolution and to highlight potential intervention point that can be targeted to force the system to adopt the desired behaviour, typically to stop cell proliferation. Our approach is therefore closely linked to the notions of robustness, complexity and flexibility of biological systems.
Contact : Emmanuel Barillot

Polarity, division and morphogenesis

Our laboratory addresses emerging questions in the field of cell and tissue dynamics, cytoskeletal mechanics and genetic regulation. Our team is interdisciplinary, composed of both biologists and physicists, and is located in the Department of Developmental Biology and Genetics of the Curie Institute. The main focus of the lab is to characterize and decipher the subcellular dynamics of the cytoskeleton, the cell dynamics and the overall tissue shape changes that are regulated both by genetics and mechanics. To study these important questions, we have recently introduced a novel model system, the Drosophila dorsal epithelial (Bosveld et al. Science, 2012), where we can combine advanced live-imaging by time-lapse confocal microscopy, genetics and force measurements. Furthermore, our current projects aim to use opto-genetics to modulate gene activities and mechanical forces to understand how the local changes in cell mechanical and genetics properties trigger large-scale deformations of the tissue.
Contact : Yohanns Bellaiche